
Trigaworx®

pokolmSvoha®

Trigaworx® – milling in gigantic scopes.

Your specialist for highest performance in extreme working depths.

Only in really difficult applications your specialist in problem solving shows his real competence. The development of **Trigaworx*** is the latest result from our extensive experience.

At all times, when high performance milling in deep slots or pockets is required, **Trigaworx*** offers the optimum solution.

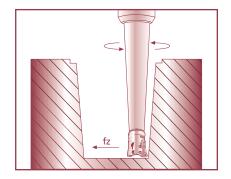
Our **Trigaworx*** range of tooling has been established to avoid vibrations when milling with long overhang of tooling.

Specially developed **Trigacut*** Polygon idexable inserts avoid all possible vibrations in your extreme milling operations.

Your profit is:

- extreme high feed rates up to 3 mm per tooth perform highest milling capability
- optimum economic value through 3 cutting edges per insert
- very quiet running, also in very deep slots, pockets or contours
- careful and gentle treatment of machining centre and tooling

Trigaworx® – your clearly defined economic advantage for highest cutting performance on difficult applications!


Indexable Inserts

Operation Data

Trigaworx® and DuoPlug® a perfect team.

Our patent protected incorporated inserts and our specially arranged form of the cutting edges guarantee an optimum load distribution also when using highest feed rates.

If roughing milling operations are required, maximum economy of machining centre and tooling is guaranteed in using **Trigaworx**[®] milling cutter bodies and Trigacut® inserts. It results in increasing your profit.

Our new Trigaworx® - Milling Cutter Bodies combined with our **DuoPlug®** Shrinking System secure roughing in extreme working dephts and contours avoiding shattering and vibrating.

Feed rates of up to 3 mm per tooth can be realized with this new tooling generation.

Also for pre-finishing and finishing, the **DuoPlug®** system is the ideal supplement.

DuoPlug® offers:

- no looseness between adaptor and cutter body
- exact concentricity
- safe load transmission
- extreme rigidity

Every single detail is an important provision for economic high speed milling, particular for deep contours

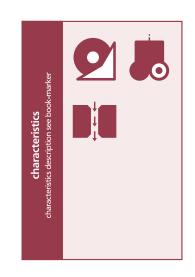
Trigaworx® and DuoPlug® are the best adapted team for economic and process-safe milling operations.

	Milling Cutter Bodies siz	ce S	wo.									ari	pors	, rem		istics
					r	l ₃	l ₂	/I ₁	d ₂	\leftarrow	-	rest. 100; 21th	access.	.\` _\`	haract	
NE	W d₃	2 16 272 SG	16	7	_	38	max.	-	M 10	15	2	s. catalogue A, C, E	V			
	POKOLM A	3 20 272 SG	20	7	-	39	max. 1	-	M 12	18,5	3	s. catalogue A, C, E	V +	•••		
	POROLM	4 25 272 SG	25	7	-	41	max. 1	-	M 16	23,5	4	s. catalogue A, C, E	V +	•••		
	< d ₁ >															
NE		2 16 272	16	7	-	28	max. 1	-	M 8	14	2	s. catalogue A, C, E	V +			
	d_2	3 20 272	20	7	-	28	max. 1	-	M 10	18	3	s. catalogue A, C, E	V +			
		4 25 272	25	7	-	32	max. 1	-	M 12	21	4	s. catalogue A, C, E	V -			
	POKOLM															
	d ₁															
	7															

	Milli	ng Cutter Bodies si	ze M													
NE	W	<u>d₃</u>	2 25 273	25	10,3	-	32	max. 1,5	-	M 12	22,5	2	s. catalogue B, D, F	V		
		d_2	3 30 273	30	10,3	-	42	max. 1,5	-	M 16	29	3	s. catalogue B, D, F	V +		
			3 35 273	35	10,3	-	42	max. 1,5	-	M 16	29	3	s. catalogue B, D, F	V +		
		POKOLM														
	<u></u>															
	*															
		$\stackrel{d_1}{\stackrel{d}{\longrightarrow}}$														
NE	W	d ₃	4 42 373	42	10,3	-	42	max. 1,5	-	16	35	4	s. catalogue B, D, F			
		d_2	5 52 373	52	10,3	-	52	max. 1,5	-	22	40	5	s. catalogue B, D, F	V +		
		POKOLM														
	\frac{1}{2}	0														
	ľ	d_1														
	ľ															

NEW latest items!

? on request


Trigaworx®

with Trigacut®- Indexable Inserts

- extremely high feed rates up to 3 mm per tooth
- optimum economic value through 3 cutting edges per insert
- very quiet running, also in deep slots, pockets and contours

Accessories	catalogu	e.no. description			
	cation	ges		\$i ^{Le}	
A	25 500	torx screw	M 2,5	Т7	
В	30 500	torx screw	M 3,0	T10	
C	07 500	screw driver		Т7	
D	10 500	screw driver		T10	
E	12 510	clamps	M 2,5	Т7	
F	13 510	clamps	M 3,0	T10	

Indexable Insert	s size S	catalogi	eno.	High A	inoys stair	less steel	ron North	rous aterials	de Grades (arhide d	gade _{coating}
		02 72 835	¥						HSC 05	PVTi
	_	02 72 840	¥						P40	PVTi
	S									

Indexable Inserts size M						
	03 73 835	•			HSC 05	PVTi
<i>*</i>	03 73 840	¥			P40	PVTi
S						

major application

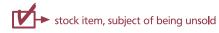
Roughing

Roughing

Roughing Finishing

Roughing Finishing

Finishing



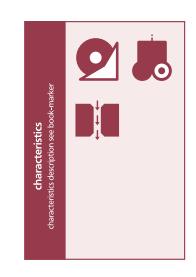
	Milling Cutter Bodies siz	ze L	wo.			//	//	//			//	s. catalogue G, H, I	pors :	/		ristics
		ze L	d		<u>/</u> r		l ₂	/ 	/d;		/z	ret. Proj. at	acces, stock	iter.	arakte	
NE		2 32 274	32	14,3	-	42	max. 2	-	M 16	29	2	s. catalogue G, H, I	V +			
	d ₂															
	POKOLM															
	_															
	d ₁															
NE		4 52 374	52	14,3	-	52	max. 2	-	22	40	4	s. catalogue G, H, I	V +			
	d_3	4 66 374 5 80 374	66 80	14,3 14,3	_	52 52	max. 2 max.	-	27	48 60	5	s. catalogue G, H, I s. catalogue G, H, I s. catalogue G, H, I	V +			
	РОКОІМ	3 80 374	00	14,5	_	52	2	_	21	60	5	G, H, I	☑ →			
	d_1															

NEW latest items!

? on request

left hand cutting

Trigaworx®


with Trigacut®- Indexable Inserts

- extremely high feed rates up to 3 mm per tooth
- optimum economic value through 3 cutting edges per insert
- very quiet running, also in deep slots, pockets and contours

NEW

Accessories	catalogu	description description		site	
G O	10 510	locking washer	ø 11		
Н	20 500	screw driver		T20	
	45 500	torx screw	M 4,5		

	catalogi	greeno.	High A	ino.	iless steel	Hon Hon	arrous aterials aterials	de Grades carbide C	gate coains
	04 74 840	¥						P40	PVTi
S									

minor application

Indexable Inserts Trigacut®

Indexable Inserts	catalog	Jeno.	(10)				rem to	odies ge stod	, serr
	catalos	DIN-specification	/1	s	r	*Of*	cutter	ge stock	sitem site
	02 72 835	WDHX 07 02 05	7	2,38	1	M 2,5	4	V +	S
	02 72 840	WDHX 07 02 05	7	2,38	-	M 2,5	4	V +	S
S									
	03 73 835	WPHX 10 03 08	10,3	3,4	_	M 3,0	4	V +	M
	03 73 840	WPHX 10 03 08	10,3	3,4	-	M 3,0	4	V +	M
S						-,,			
> . D	04 74 840	WDHX 07 02 05	14,3	4,76	-	M 4,5	6	V +	L
						.,-			
S									

Operation Data for Trigaworx®- Milling Cutter Bodies

Feed per tooth/Depth of Cut; Feed per tooth (fz), Depth of cut (ap)

Cutti	ng Material			ovii	
		FLIAR	PNO PVI	HSCUS PWIT	
	Steel			,	
ä	7 x 2,38	fz (mm)	0,3 - 1,5	_	
- Luse		ap (mm)	0,3 - 0,6	_	
e of	10,3 x 3,4	fz (mm)	0,5 - 2,0	0,5 - 2,0	
Size		ap (mm)	0,3 - 1,0	0,3 - 1,0	
Size of Indexable Insert	14,3 x 4,76	fz (mm)	0,5 - 3,0	_	
<u>=</u>		ap (mm)	0,3 - 1,2	_	

Cutting Speeds

Material	Application	PAOPVII	HSCOS PATÍ	
Steel				
Free Machining Steel/Mild Steel	¥	100 - 250	150 - 250	
normal Tool Steel/Steel Castings	¥	100 - 200	150 - 250	
Tool Steel, difficult to machine/ Steel Castings, difficult to machine	¥	100 - 150	120 - 200	

These speed and feed values are basic and necessitate rigid holding of cutter- and spindle mounting, positive work piece fixture as well as adequate machine horse power in order to achieve optimum and economic cutting conditions. Please ask our office or one of our applications engineers.

name, first name

company

street and no.

Purchase Order Form

Description		0.0	o	Description		e.no.
	catalo	dife	quantity		catalo	gueno.
rigaworx® Milling Cutter Bodies				Trigacut® Indexable Insert		
Ailling Cutter Body DuoPlug® for rigacut® indexable inserts size S	2 16 272 SG			Indexable Inserts size S	02 72 840	
-3	3 20 272 SG					
	4 25 272 SG					
hreaded Shank End Mill Body for rigacut® Indexable Inserts size S	2 16 272					
	3 20 272					
	4 25 272					
hreaded Shank End Mill Body for rigacut® Indexable Inserts size M	2 25 273			Indexable Inserts size M	03 73 835	
-9	3 30 273				03 73 840	
	3 35 273					
hell Type Milling Cutter Body for rigacut® Indexable Inserts size M	4 42 373					
	5 52 373					
hreaded Shank End Mill Body for rigacut® Indexable Inserts size L	2 32 274			Indexable Inserts size L	04 74 840	
hell Type Milling Cutter Body for rigacut® Indexable Inserts size L	4 52 374					
	4 66 374					
	5 80 374					
Accessories						
orx screw	25 500			clamps	13 510	
orx-screw driver	07 500			locking washer	10 510	
lamps	12 510			torx-screw driver	20 500	
orx screw	30 500			torx screw	45 500	
orx-screw driver	10 500					

postal code and town

phone

e-mail-adress

Indexable Inserts

Solid Carbide End Mills

Arbors and Adaptors

High Speed Spindle Technology

Shrinking Technology

Accessories

Service

Special Products

Operation Data

Don't forget your

fax

From practice for practice

All theory is every days routine:

Useful know-how results from practice, and has to prove in practice. This is one reason, why we develop new products under real conditions and under the supervision of our customer and his parameters.

Application examples Trigaworx[®]:

Example 1: from practice...

A well-known toolmaker has to machine 9 holes 70 mm dia. with 80 mm depth in solid steel facing several cross holes.

Operation data:

Machine: DMU 100 V SK40 Arbor: 75 16 750 (SK 40,

75 mm overhang)

Component: steel 1.2085, 15-17%

chromium, 2% nickel 600 x 400 x 100 mm

Up to our test, this has been machined with a Threaded Shank End Mill Body 35 200/12 (35 mm dia. r=6, z=3, 12° pos) and an insert 03 12 895K.

results with this setup:

Operation data:

rev.: 2000 per min. feed: 2400 mm/min.

ap: 1 mm ae: 21 mm

chip volume: 50 cm³/min (3.08 cu.in/min)

tool life in m: 38-45 m tool life in time: 15-25 min.

cooling: air

Machining time f. 9 holes was 32 min, but it took only 15-25 min. when turning of inserts was necessary. In order to try improving cutter life and reducing machining time, we have decided to use the following combination:

cutter body: 3 35 273 insert: 03 73 835

results with Trigaworx®

Operation data:

rev.: 2000 per min feed: 5000 mm/min ap: 0,75 mm

ae: 60 % - 100 % chip volume: 78 cm³/min

(4.08 cu.in/min)

tool life in m: 200-250m tool life in time: 40-50min

cooling: air

Result:

chip volume: +56 % tool life (time): +900 % much safer process

Trigaworx[®]

your problem solver for difficult applications in deep cavities.

Trigaworx® – problem solver for milling in deep cavities

Example 2: from practice...

A toolmaker (supplier of automotive industry) has a terrible job to machine deep pockets with almost 90°-walls. Depth of pocket: approx. 200 mm in a piece of steel of 900 mm x 500 mm x 700 mm.

Operation data:

machine: **DMU 200 V SK50**

Arbor: 100 22 710

(SK 40,

100 mm overhang)

200 22 710

(200 mm overhang)

steel 1.2311 component:

results with this setup:

Operation data:

rev.: 1.200 per min. feed: 3.000 mm/min ap: 1,5 mm 31 mm ae: chip volume: 140 cm³/min

(8,54 cu. in/min)

cooling:

After changing the arbor from 100 mm reach to 200 mm reach, feed had to be reduced due to enormous vibrations.

results with Trigaworx®

Operation data:

rev.: 1.100 per min. feed: 10.000 mm/min 1 mm ap:

31mm ae:

chip volume: 312 cm³/min

(19 cu. in/min)

cooling: air

We didn't have any vibrations, even at the deepest spot of this component. Power consumption of the machine could be reduced from 60 % to 30 %.

For practice:

Using Trigaworx® tooling results in phantastic improvements. Smooth running also in extremely deep cavities and pockets. Feed rates up to 10 m/min. double your chip volume!

Up to our test, this has been machined with a Shell Type End Mill Body 52 310 (52 mm dia. r=6, z=5) and inserts 03 12 842K.

After reaching this problematic depth, we have changed the cutter to 5 52 273 (52 mm dia z=5) and inserts 03 73 840.

Specialists in Problem Solving:

pokolm Svoha

High Quality Cutting Tools for Professionals

Pokolm

Frästechnik GmbH & Co. KG
Adam-Opel-Straße 5
33428 Harsewinkel | Deutschland

phone: +49 [0] 52 47/93 61 - 0 fax: +49 [0] 52 47/93 61 - 99

Internet: www.pokolm.de eMail: info@pokolm.de

Voha

Vollhartmetall-Werkzeuge GmbH Schreinerweg 2a + 2b

51789 Lindlar | Deutschland

phone: +49 [0] 22 66/47 81 - 11 fax: +49 [0] 22 66/47 81 - 40

Internet: www.voha-tosec.de eMail: info@voha-tosec.de

Contact: