TOOLING SYSTEMS PROCESS OPTIMIZATION CONSULTING IN MILLING STRATEGIES

QUADWORX®

→ SQUARED FEED RATES

SQUARED FEED RATES

uadworx[®] - this new Pokolm-development Quadworx[®]-tooling are available with threaded Q offers a high-feed milling possibility for universal shanks, shell type with plain bores as well as with applications. Huge feed-rates when roughing our patent protected **DuoPlug®**-system for highest steel, cast iron or tempered steel care for efficient concentricity and maximum rigidity. All tools are machining of your components and now -this is NEW- also for stainless- and acid-resistant materials. This new range of Quadworx[®]-milling cutters is when machining deep cavities. providing more efficiency and machining capacity.

provided with internal coolant supply to ensure maximum process reliability and secure chip removal

2

DuoPlug® Threaded shank

Shell type

ncreased tooth rigidity through incorporated insert HSC05, P40, P25 and K10 as well as our newly deveseats allows for extended tool life of the cutter bodies, loped grade M40 with chip guide steps and our latest, higher chip volume and increased productivity, simulmodified coating PVST are highly economic through its taneously. Our high-accuracy indexable inserts in grades no. of cutting edges and its increased tool life.

our cutting edges per indexable insert in connection with our special macro-geometry -a combination of a large corner radius and a wiper edge- provide universal application opportunities in 2, 2.1/2 and 3-D machining. Re-engineered micro-geometries with polished surfaces help minimizing heat penetration to the inserts and care for a constant chip removal.

BRIGHT PROSPECTS...

M and rvsi are the new second and heat-resistant machining of stainless- acid- and heat-resistant materials. Extremely tough and high-temperatureresistant carbide together with our modified AlTiN- This results in a maximum process reliability, even with coating reduce built-up cutting edges, increase thermal stability and reduce frictional heat at the same time.

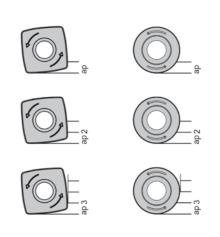
40 and PVST are the new features for efficient Orthogonal arranged insert seats in the cutter bodies together with the second clearance face of the inserts, provide a perfect and secure positioning of the inserts. highest possible chip volume and results in lower costs per component.

M40 PVST FOR MILLING STAINLESS MATERIALS

In case you need further information about our stainless range, you can download our current brochure from our homepage www.pokolm.com or ask by phone / e-mail under \odot contacts (see back page) for this brochure.

4

TECHNICAL INFORMATION


Due to the reduced arc of contact, when machining vertical moulds, less cutting forces influence milling cutters, inserts and machine spindle.

omparing different arcs of contact for increasing cutting depths (a_p up to a_p 3) illustrate the reason of better running smoothness. As soon as the ap-value has exceeded the size of our **Quadworx**®-insert's minor cutting edge $(a_p 3)$, the milling cutter gets a side clearance and thus it is cutting free and radial forces for milling cutter, inserts and machine spindle are decisively reduced.

Please take notice of the **theoretical** stock, not pre-determinable. The rp-values as well as operation data and measuring point diameter Also this type of milling cutters leaves a material di will be mentioned on the following pages.

These following graphics explain the kind of geometryinfluence to those cutting forces. One further element is the reduced power consumption of the machine, which allows more careful treatment of the machine

SUMMARY OF ADVANTAGES:

- \odot 4 cutting edges per insert for extremely economic applications
- \odot very high chip removal rates and very easy cutting actions
- ↔ thanks to the inserts positioning via its second clearance face and the orthogonal arranged insert seats in the cutter body, any twisting of the insert is avoided
- \odot maximum process reliability specially in interrupted cutting applications
- ↔ wiper edge and large corner radius generate high accuracy surfaces, already in roughing operations

6

Page

⊖ CONTENT

7

€	QUADWORX [®] "S" dimensions and operation data
€	QUADWORX [®] "M" dimensions and operation data
€	QUADWORX [®] "L" dimensions and operation data

pokolm Svoha

DIMENSIONS AND OPERATION DATA

The Quadworx[®] "S["]-Range

MILLING CUTTER BODIES		70.								
	Catalogue.	d ₁	1	r _p	d ₂	d ₃	l ₂	l ₃	z	
Duo Plug®										
© d3	2 16 247 SG	16	7	1,3	M 10	15	1	31	2	
	3 18 247 SG	18	7	1,3	M 10	15	1	31	3	
	3 20 247 SG	20	7	1,3	M 12	18,6	1	33	3	
	4 25 247 SG	25	7	1,3	M 16	23,5	1	35	4	
d1 rp										
Threaded shank end mill	bodies									
d 3 d 2	2 14 247	14	7	1,3	M 8	13,8	1	28,5	2	
	2 16 247	16	7	1,3	M 8	13,8	1	28,5	2	
	3 18 247	18	7	1,3	M 8	13,8	1	28,5	3	
²	3 20 247	20	7	1,3	M 10	18	1	28,5	3	
d1 Ip	4 25 247	25	7	1,3	M 12	21	1	32,5	4	

Accessories

ACCESSORIES	catalogue No.	Description	Dimensions			
	25 500	Torx screw	M 2,5	L 5,0	T 7	
POKOLM	07 500	Torx screwdriver	T 7			

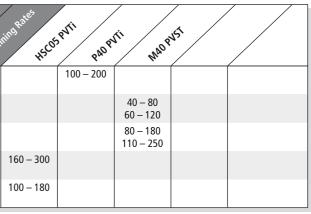
8

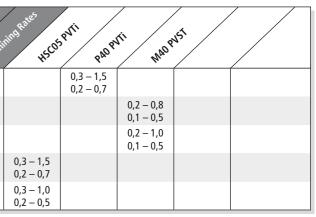
Starting torque for Torx $^{\otimes}$ screw 25 500 $M_{d}\!\!:\!1,\!28$ Nm

$Quadworx @-Inserts \ Size \ _{\ }S", \ DIN-Identification \ (SDMX/SDMT) \ 070205 \ SN$

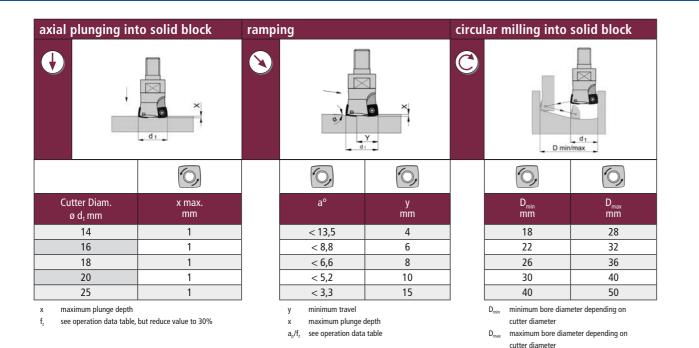
INDEXABLE INSERTS	catalor	Jue NO. DIN- Identification	Grad
	02 47 837	SDMX 070205 SN	HSC05
	02 47 842	SDMX 070205 SN	P40
	02 47 896	SDMT 070205 SN	M40
	02 47 050	30101 070203 SN	10140


Cutting Speeds $V_{\mbox{\scriptsize c}}$ in m/min


MATERIAL	/	/ /	/ /	/ /
		/.		Machi
Steel		0,5	7	roughing finishing
High-temperature alloys		0,5	7	roughing finishing
Stainless Steel		0,5	7	roughing finishing
Cast Iron		0,5	7	roughing finishing
Hardened Steel		0,5	7	roughing finishing

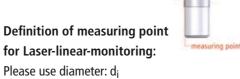

Application data (fz/ap)

MATERIAL		/	/	
				Math
Steel	Ó,	0,5	7	f _z (mm) a _p (mm)
High-temperature alloys	Ó,	0,5	7	f _z (mm) a _p (mm)
Stainless Steel	Ó,	0,5	7	f _z (mm) a _p (mm)
Cast Iron	Ó,	0,5	7	f _z (mm) a _p (mm)
Hardened Steel	Ó,	0,5	7	f _z (mm) a _p (mm)



pokolm C voha

EXTENDED OPERATION DATA



TECHNICAL INFORMATION

Please take notice of the theoretical corner radius, which has to be programmed. The face milling cutter leaves a material stock not pre-determinable. In order to consider this fact for following tooling , we have estimated this value. **This dimension "t" is 0.51 mm.**

Catalor	d ₁ d ₁	d _i	Site of remaining socks
2 16 247 SG	16	5,7	0,51
3 18 247 SG	18	7,7	0,51
3 20 247 SG	20	9,7	0,51
4 25 247 SG	25	14,8	0,51
2 14 247	14	3,7	0,51
2 16 247	16	5,7	0,51
3 18 247	18	7,7	0,51
3 20 247	20	9,7	0,51
4 25 247	25	14,8	0,51

a./f. see operation data table

FROM PRACTICE TO PRACTICE

JOB TITLE:

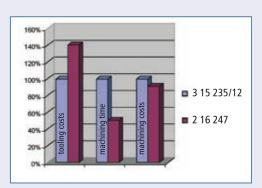
Process optimizing of a component from material 1.4534 (X3CrNiMoAl13-8-2). This is equal to the US-alloy PH 13-8Mo, a high-tensile stainless steel with aircraft- and space conditions. Previously, a slot was produced with a Pokolm threaded shank end mill body No. 3 15 235/12 (15 mm diam., r=3.5). The slot is curved and open on both ends. Dimensions are: 150 mm long, 20 mm wide and 70 mm deep. With this tool mentioned, the customer could produce 1 complete slot. After that, inserts had to

MACHINE	MATERIAL
DMU 60 P	1.4534

The slots of this component have been produced countour-parallel in z-constant cycle in climb milling as well as conventional milling. Regarding machining time, the feed rate and the chip volume have been more than doubled. This Quadworx[®] "S" combination allows a

EXAMPLE FROM PRACTICE:

	previously	now
machining:	slot	
material:	1.4534 (PH13-8)	
arbor:	00 16 750 S	
	(16 mm diam., SK 40)	
extension:	40 08 601	
cutter body:	3 15 235/12	2 16 247
	(15 mm diam., r = 3.5)	(16 mm diam., $r_p =$
Insert:	01 07 895	02 47 896, M40
coating:	PVGM	PVST
overhang:	73 mm	73 mm
v_c (speed):	170 m/min	170 m/min
v_f (feed rate):	900 mm/min	1.800 mm/min
S (revolutions):	3.400 1/min	3.400 1/min
\mathbf{f}_{z} (feed per tooth):	0,083 mm	0,59 mm
\mathbf{a}_{p} (depth of cut):	0,3 mm	0,3 mm
a _e (width of cut):	5 – 15 mm	4 – 16 mm
chip volume:	2,13 cm ³ /min	4,32 cm³/min
	= 0,13 cu. in./min	= 0,264 cu. in./min
machining time:	40 min	20 min


PROGRAMMING SYSTEM

MillPlus

RESULT:

Machining time of this component has been reduced from 40 to 20 minutes. At the same time, tool life increased to 2 components with these new inserts **Quadworx®** "S" 02 47 896, without any insert change. Even the increased costs for using this new **Quadworx®** "S"-combination has already payed itself off after machining only 1 component.

= 1,3)

DIMENSIONS AND OPERATION DATA

The Quadworx[®] "M["]-Range

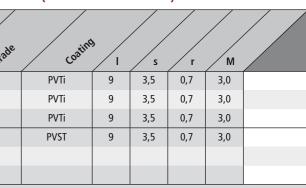
MILLING CUTTER BODIES		HO.								
	catalogue.	d,	1	r _p	d2	d3	l ₂	l ₃	z	
Duo Plug®										
d3	2 22 248 SG	22	9	1,5	M 12	18,5	1,5	35,5	2	
® da	3 25 248 SG	25	9	1,5	M 16	23,5	1,5	40	3	
d1 rp										
Threaded shank end mill	bodies									
d 3 d 2	2 22 248	22	9	1,5	M 10	18	1,5	29	2	
	3 25 248	25	9	1,5	M 12	21	1,5	33	3	
	4 30 248	30	9	1,5	M 16	29	1,5	42	4	
	4 35 248	35	9	1,5	M 16	29	1,5	42	4	
	5 35 248	35	9	1,5	M 16	29	1,5	42	5	
	5 42 248	42	9	1,5	M 16	29	1,5	42	5	
Shell type milling cutter	bodies									
	5 42 348	42	9	1,5	16	40	1,5	42,5	5	
d3 d2	6 52 348	52	9	1,5	22	40	1,5	52,5	6	
opeteim										

Accessories

ACCESSORIES	Catalogue No.	Description		Din	ensions	
	30 500	Torx screw	M 3,0	L 7,0	T 10	
POKOLM	10 500	Torx screwdriver	T 10			

Quadworx®-Inserts Size "M", DIN-Identification (SDMX/SDHX/SDMT) 09T307 SN

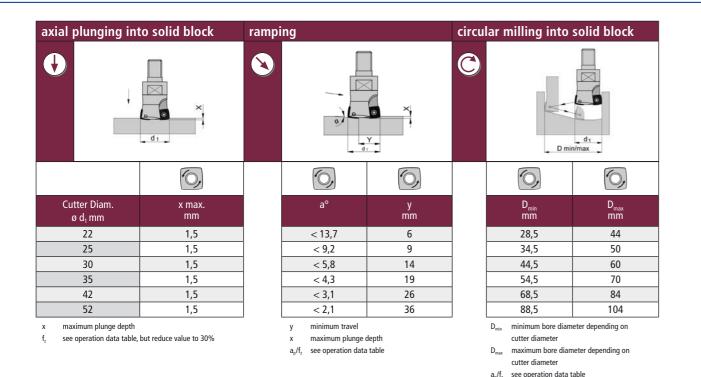
INDEXABLE INSERTS	atalor	Jue No. DIN-	
	Cat	Identification	(বি
	03 48 842	SDMX 09T307 SN	P40
	03 48 852	SDMX 09T307 SN	P25
	03 48 860	SDHX 09T307 SN	K10
· 533	03 48 896	SDMT 09T307 SN	M40


Cutting Speeds $V_{\mbox{\scriptsize C}}$ in m/min

MATERIAL	/	/ /		/ /
		/.	$\langle \cdot \rangle$	Machi
Steel		0,7	9	roughing finishing
High-temperature alloys		0,7	9	roughing finishing
Stainless Steel		0,7	9	roughing finishing
Cast Iron		0,7	9	roughing finishing
Hardened Steel		0,7	9	roughing finishing

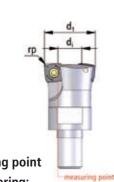
Application data (fz/ap)

MATERIAL		/.		Wath	ning Bates	VTi PADP	UTI P25P	UTI MADE	NST .
Steel	Ó,	0,7	9	f _z (mm) a _p (mm)		0,5 – 2,0 0,3 – 1,0	0,5 – 2,0 0,3 – 1,0		
High-temperature alloys	Ó,	0,7	9	f _z (mm) a _p (mm)				0,3 - 0,9 0,2 - 0,7	
Stainless Steel	Ó,	0,7	9	f _z (mm) a _p (mm)				0,3 - 1,2 0,2 - 0,9	
Cast Iron	Ó,	0,7	9	f _z (mm) a _p (mm)	0,5 - 2,2 0,2 - 1,2				
Hardened Steel	Ó,	0,7	9	f _z (mm) a _p (mm)	0,2 - 1,0 0,2 - 0,5				



pokolm C voha

EXTENDED OPERATION DATA


TECHNICAL INFORMATION

Please take notice of the theoretical corner radius, which has to be programmed. The face milling cutter leaves a material stock not pre-determinable. In order to consider this fact for following tooling , we have estimated this value.

catalor	Jue No. d ₁	di	Size of maining stack t
2 22 248 SG	22	7,1	0,65
3 25 248 SG	25	9,8	0,65
2 22 248	22	7,1	0,65
3 25 248	25	9,8	0,65
4 30 248	30	14,7	0,65
4 35 248	35	19,6	0,65
5 35 248	35	19,8	0,65
5 42 248	42	26,5	0,65
5 42 348	42	26,5	0,65
6 52 348	52	36,5	0,65

This dimension "t" is 0.65 mm.

Definition of measuring point for Laser-linear-monitoring: Please use diameter: di

FROM PRACTICE TO PRACTICE

JOB TITLE:

VEMO Vereinigte Modellbau GmbH from the town of time. The goal was, finding the optimum between cost for tooling, process reliability and machining time. The roughing Kindsbach has been formed in 1971 as a company merger of 2 model making companies. Their more than 30 years operation of those 4 mould inserts has been settled experience as supplier of automotive industry and machinein less than 72 minutes by the largest diameter cutter body from our QUADWORX[®] "M"-range (6 52 348). The tool makers are the basis of their success today. With latest CNC-machining centres in combination with different CNCfollowing operation of removing remaining material programming systems, VEMO offers optimum qualification should be realized with a QUADWORX® "M"- cutter body for a prosperous co-operation with their customers. A base 3 25 248, in a preferably manless operation without any plate, equipped with 4 mould inserts, should be prepared machine downtime. up to the pre-finished condition in the shortest possible

MACHINE	MATERIAL
ZPS 2080	1.2312

Taper Adapter with M10 internal thread, together with the hese mould inserts for the foundry pattern have been machined in a z-constant cycle from inside to cutter body 3 25 248 from our Quadworx[®] "M"-range, this outside, with the focus for a maximum possible manless operation could be finished, slim and rigid. The complete machining time. A base plate, fixed on the machine table machining time for those 4 inserts from roughing to with power clamps, cares for correct clamping on a ZPS pre-finishing was 128 minutes, all this with minimum tool 2080 machine with Selca control. With a combination of costs and maximum cutting parameters. a Pokolm reduction sleeve (SK 50 to MTS 3) and a Morse

EXAMPLE FROM	PRACTICE:	RESULT:
component: material: arbor: extension: cutter body: insert: coating: overhang: v _c (speed): v _f (feed rate): S (revolutions): f ₂ (feed per tooth): a _p (depth of cut): a _e (width of cut): chip volume:	mould insert 1.2312 50 3 710 (SK 50 to MTS 3) 30 610 3 25 248 (25 mm diam., rp = 1.5) 03 48 842, P40 PVTi 113 mm 196 m/min 8.000 mm/min 2.500 1/min 1,07 mm 0,7 mm 15 mm 84 cm³/min = 5,13 cu. in./min 56 min	RESULT Machining was less has contri operation manless ro reduction
5		

PROGRAMMING SYSTEM

DEPO-CAM / Euklid

g time for roughing and removing remaining material than 130 minutes without any insert changes. This ributed to an optimum use of the inserts and essential time. The increased chip volume as well as an almost roughing operation have contributed to a considerable cost and remarkable time gaining for all following operations.

pokolmCvoha PREMIUMTOOLS WE KNOW HOW

DIMENSIONS AND OPERATION DATA

The Quadworx[®] "L["]-Range

MILLING CUTTER BODIES	catalogue	140. d ₁	1	r _p	d2	d ₃	l ₂	l ₃	z	
threaded shank										
d 3 d 2	3 35 249	35	10	2,3	M 16	29	2,5	42	3	
	4 42 249	42	10	2,3	M 16	29	2,5	42	4	
d										
shell type										
d,	4 42 349	42	10	2,3	16	35	2,5	42	4	
d_2	5 52 349	52	10	2,3	22	40	2,5	52	5	
Opolkolim	7 66 349	66	10	2,3	27	48	2,5	52	7	
	8 80 349	80	10	2,3	27	60	2,5	52	8	
G,										

Accessories

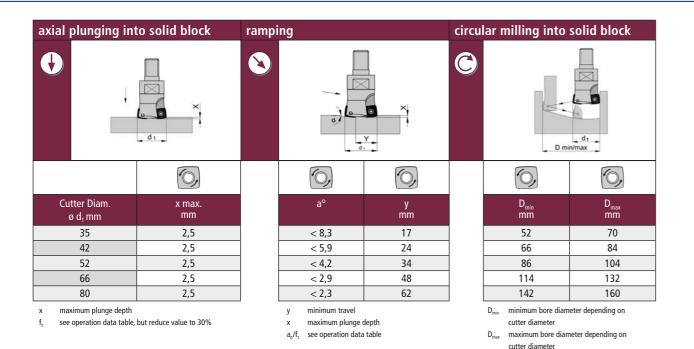
ACCESSORIES	talogue No.	Rescipion			ensions	
	40 505 K	Torx screw	M 4,0	O ^{III} L 9,35	T 15	
POKOLM	15 500	Torx screwdriver	T 15			

Starting torque for $\text{Torx}^{\circledast}$ screw 40 505 $M_{d}\text{:}$ 5,15 Nm

Quadworv@-Inserts Size 1" DIN-Identification (SDMY/SDHY/SDMT) 100510 SN

INDEXABLE INSERTS		LE NO.							/ /
	catalor	DIN- Identification	Grade	coatine		s	r	м	
	04 49 842	SDMX 100510 SN	P40	PVTi	10	5	1	4,0	
	04 49 852	SDMX 100510 SN	P25	PVTi	10	5	1	4,0	
	04 49 860	SDHX 100510 SN	K10	PVTi	10	5	1	4,0	
	04 49 896	SDMT 100510 SN	M40	PVST	10	5	1	4,0	
- 0									

Cutting Speeds $V_{\mbox{\scriptsize C}}$ in m/min


MATERIAL	/.	/	Machi	ining Rates K10P	UTI PAOP	VII P25P	UTI MADE	\$ ⁵¹
Steel	1	10	roughing finishing		100 – 200	150 – 250		
High-temperature alloys	1	10	roughing finishing				40 - 80 60 - 120	
Stainless Steel	1	10	roughing finishing				80 – 180 110 – 250	
Cast Iron	1	10	roughing finishing	140 – 250				
Hardened Steel	1	10	roughing finishing	80 – 160				

MATERIAL	1 Nothing Pates										
		/ <	/	Mac	¥10.	P40'	P251	MAD			
Steel	Ó,	1	10	f _z (mm) a _p (mm)		0,3 — 2,5 0,3 — 1,5	0,3 — 2,5 0,3 — 1,5				
High-temperature alloys	Ó,	1	10	f _z (mm) a _p (mm)				0,35 – 1,0 0,25 – 0,9			
Stainless Steel	Ó,	1	10	f _z (mm) a _p (mm)				0,35 – 1,5 0,25 – 1,5			
Cast Iron	Ó,	1	10	f _z (mm) a _p (mm)	0,3 – 2,5 0,3 – 1,7						
Hardened Steel	Ó,	1	10	f _z (mm) a _p (mm)	0,3 – 1,5 0,3 – 0,8						

pokolm C voha

EXTENDED OPERATION DATA

TECHNICAL INFORMATION

Please take notice of the theoretical corner radius, which has to be programmed. The face milling cutter leaves a material stock not pre-determinable. In order to consider this fact for following tooling, we have estimated this value. This dimension "t" is 0.83 mm.

Catalor	d ₁	d _i	Size of penaining societ
3 35 249	35	17,7	0,83
4 42 249	42	24,7	0,83
4 42 349	42	24,7	0,83
5 52 349	52	34,7	0,83
7 66 349	66	48,7	0,83
8 80 349	80	62,7	0,83

a./f. see operation data table

Definition of measuring point for Laser-linear-monitoring: Please use diameter: di

FROM PRACTICE TO PRACTICE

JOB TITLE:

The company WWS Metallformen GmbH from the town forming moulds with cutter bodies for round inserts from Pokolm. The milling cutter 52 310/7 (52 mm diam., r=6) of Hatzenbühl manufactures prototype- and duplicate products together with the required metal forming moulds offers most universal application possibilities and has since more than 20 years. Specially, their service from been very much appreciated by our customers. But, the design of those prototype components, conversion into power consumption related to the chip volume, causes CAD/CAM systems up to production of the metal forming some problems for our customers in certain machining moulds and the first tryouts, is very much appreciated operations, specially, when female moulds with small by their customers. WWS supplies into all fields of sheet draft angles have to be produced. Due to the geometric characteristics of the round inserts and those radial forces fabricating industry, from consumer goods industry, which occur during milling, vibrations arise suddenly, medical technology, automotive engineering and last again and again. Feed rates and cutting depths have to but not least, complex deep-drawing parts for aircraftand spaceware. Up to now, WWS machines their metal be reduced, in order to secure process reliability.

MACHI	NE MATEF	RIAL
ZPS 106	0 St 52-3	

control. There was no difficulty in maching material ST 52-3 he male and female die of a deep-drawing mould for a truck-muffler has been machined in a z-constant itself, but the problem is a process reliable machining of circular-pocket cycle from inside to outside. Main focus those burn-out contours with a hardness of > 50 HRC. was the maximum achievable chip volume with smallest Those requirements habe been fulfilled and exceeded by possible spindle load. The component, clamped solid, was our Quadworx[®] "L" tooling. machined on a ZPS milling machine type 1060 with Selca

EXAMPLE FROM	PRACTICE:	RESULT:
component: material: arbor: cutter body: insert: coating: overhang: v _c (speed): v _f (feed rate): S (revolutions):	PRACTICE: female drawing die St 52-3 100 22 710 (22 mm diam., SK 50) 5 52 349 (52 mm diam., rp = 2,3) 04 49 852, P25 PVTi 153 mm 212 m/min 8.000 mm/min 1.300 1/min 1,23 mm 1,5 mm 31 mm	RESULT: Machining reduced by load, bette chip volum reduced th the custom operations
		11.8
		11-2
chip volume:	372 cm ³ /min = 22,7 cu.in./min	
machining time:	45 min	

PROGRAMMING SYSTEM

Cimatron

g time for roughing this female drawing die has been by 50 %. And this with an only 5 % increase of spindle er smoothness of running and less vibrations. Increased me together with the small increase in spindle load, have he costs for roughing operations by more than 50 % and mer achieved a considerable time gaining for his following

pokolmCvoha PREMIUMTOOLS WE KNOW HOW

QUADWORX®

➔ CONTACT

Pokolm

Frästechnik GmbH & Co. KG Adam-Opel-Straße 5 33428 Harsewinkel Germany

fon: +49 5247 93 61-0 fax: +49 5247 93 61-99

email: info@pokolm.de internet: www.pokolm.com Voha-Tosec Werkzeuge GmbH Schreinerweg 2a + 2b 51789 Lindlar Germany

fon: +49 2266 4781-0 fax: +49 2266 4781-40

email: info@voha-tosec.com internet: www.voha-tosec.com

further information via: WWW.POKOLM-VOHA.COM