SPINWORX®

→ FÜR SCHNEIDPLATTEN RADIUS 8 mm / 10 mm

DIE DREHENDE SCHNEIDPLATTE

SPINWORX® – das neue Werkzeugsystem stellt in Frage, was jahrzehntelang nur so funktionierte: Die Schneidplatte muss fest angeschraubt werden - wäre sie lose hieße das über kurz oder lang automatisch: Plattenbruch! Nicht so beim **SPINWORX®** – die Platte dreht sich mit und macht das händische Drehen überflüssig. Durch die drehende Schneidplatte im Träger entsteht kein Kerbverschleiß mehr; Sie haben eine 100%ige Nutzung der vorhandenen Schneide und nutzen somit alle Ressourcen

ohne Verluste. **SPINWORX**® setzt neue Maßstäbe – verringern Sie Ihre Maschinenstillstands- und Nebenzeiten gleich Null. Ermöglichen Sie durch den Einsatz von **SPINWORX**® eine effizientere Bearbeitung Ihrer Werkstücke und verbessern Sie Ihre Maschinenverfügbarkeit.

Frhältlich sind die SPINWORX®-Werkzeuge als Einschraub- und Aufsteckfräser sowie mit dem von Pokolm patentierten DuoPlug®-System für höchste Rundlaufgenauigkeit und maximale Steifigkeit.

SPINWORX®

2

Die je nach Bedingungen deutlich geringere Spanstauchung ermöglicht eine geringere Leistungsaufnahme gegenüber dem herkömmlichen System, was sich schonend auf die Maschinenspindel auswirkt. Durch eine deutlich höhere Laufruhe verringert sich die Geräuschentwicklung. Das Spektrum des SPINWORX® reicht von 25 bis 200 Millimeter Durchmesser und entspricht den Abmessungen des herkömmlichen Systems und sind somit ohne NC-Programmänderung austauschbar.

IRRTÜMER DIESER WELT:

+++, Das Pferd wird es immer geben, Automobile hingegen sind lediglich eine vorübergehende Modeerscheinung."+++

(Der Präsident der Michigan Savings Bank 1903)

+++"Die weltweite Nachfrage nach Kraftfahrzeugen wird eine Million nicht überschreiten…"+++

(Gottlieb Daimler, Erfinder, 1901)

+++, Ich denke, dass es einen Weltmarkt für vielleicht fünf Computer gibt."+++ (Thomas J. Watson Senior, Vorstandsvorsitzender IBM)

+++"Die Mauer wird in 50 und auch in 100 Jahren noch bestehen bleiben, wenn die dazu vorhandenen Gründe noch nicht beseitigt worden sind."+++

(Erich Honecker, Vorsitzender des Staatsrats der DDR, Januar 1989)

+++, Wendeschneidplatten müssen fest verschraubt sein!"+++

SIE PROFITIEREN VON DEN FOLGENDEN VORTEILEN:

- → 100 %ige Nutzung der kompletten Schneide
- vielfach höhere Standzeiten*
- vier Mal geringere Maschinenstillstandzeiten kein händisches Drehen der Platte nötig
- deutlich geringere Spanstauchung bedingt eine geringere Leistungsaufnahme und somit die Schonung der Maschinenspindel

*je nach Fräsbedingungen

→ INHALT

 → Spinworx® - Radius 8 mm Technische Daten
 → Spinworx® - Radius 10 mm Technische Daten
⊙ Aus der Praxis für die Praxis 10
→ Spinworx® - Radius 5 mm / 6 mm Bitte beachten Sie hierzu unseren separaten Prospekt

TECHNISCHE DATEN

Spinworx® - Radius 8 mm

spinittorx .	tadias o									
Wendeplattenfräser	Bestelliu.	d_1	d	/ r	d ₂	d ₃	/ 	l ₃	z	PreisintilR
Einschraubfräser										
d3 d2 Geotestrin	3 35 201/7 DR	35	16	8	M16	29	4	43,5	3	
d1 d Aufsteckfräser										
	4 52 300/7 DR	52	16	8	22	40	3,8	53	4	
d3	5 52 300/7 DR	52	16	8	22	40	3,8	53	5	
Chlosecone	6 66 300/7 DR	66	16	8	27	48	3,8	53	6	
	8 80 300/7 DR	80	16	8	27	60	3,8	53	8	
d1 d1	7 100 300/7 DR	100	16	8	32	70	4,8	53	7	
	9 100 300/7 DR	100	16	8	32	70	4,8	53	9	

Zubehör

Zubehör	Bestellint.	Bezeichnung	Į,	ghe Preisinkur
	TV 1-5	Torque Vario - S Drehmoment- schraubendreher	von 1,0 bis 5,0 Nm Nm	mit Skala
-	T15 500	Torx-Wechselklinge für Torque Vario	T 15 L 175	max. 5,5 Nm
	T15 502	Torx-MagicSpring Wechselklinge für Torque Vario	T15 L 175	max. 5,5 Nm

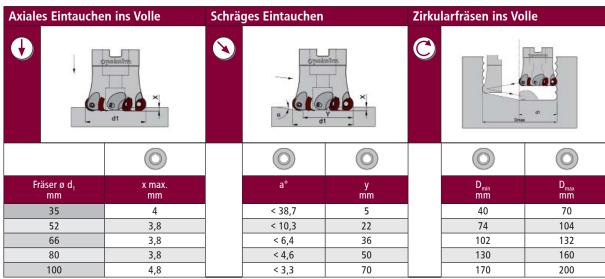
Spinworx®-Platten

Anzugsmoment Torxgröße T15 $\rm\,M_{d}$: 1,8 $\rm\,Nm$

WENDESCHNEIDPLATTE							Ali
	Bestell	DIN- Bezeichnung	Qualität		d	r	Preisin EU
	04 16 8A0 DR	ROHX16	Stahl/Guss	kurzspanend	16	8	
	04 16 8B0 DR	ROHX16	Stahl	langspanend	16	8	

Wendeschneidplatten mit dazugehörigen Stiften sind nur im Set erhältlich.

Schnittgeschwindigkeit V_c in m/min


WERKSTOFF		\ \ \ \ \ \ \		Realth	*8kg DR	*9BODR
Stahl	***	16	8	Grob Fein	100 – 300 150 – 350	100 – 300 150 – 350
Eisenguss	***	16	8	Grob Fein	120 – 220 150 – 250	

Anwendungsdaten (f_z/a_p)

WERKSTOFF		\ \ \ \		1/20	*9RDDR	*88BDR
Stahl	0	16	8	f _{z (mm)} a _{p (mm)}	0,2 - 0,5 0,2 - 3,0	0,25 - 1,0 0,2 - 3,0
Eisenguss	0	16	8	f _z (mm) a _p (mm)	0,2 - 0,5 0,2 - 3,0	

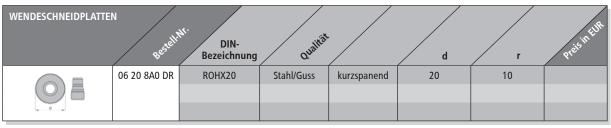
Diese Angaben sind Richtwerte.

Erweiterte Einsatzdaten

- x maximal zulässige Eintauchtiefe
- f_z entsprechend Einsatztabelle auf 30% reduzieren
- $\begin{array}{ll} y & Mindestverfahrweg \\ a_p/f_z & entsprechend Einsatztabelle \end{array}$
- D_{min} kleinster Bohrungsdurchmesser in Abhängigkeit vom Werkzeugdurchmesser
- D_{max} größter Bohrungsdurchmesser in Abhängigkeit vom Werkzeugdurchmesser

TECHNISCHE DATEN

Spinworx® - Radius 10 mm


Wendeplattenfräser	Bestellin.	d ₁	d	/ / r	d ₂	d ₃	 I ₂		/ z	Preisin EUR
Aufsteckfräser								/		/ · · ·
d3 8 12 d2 10 16	7 100 340/7 DR	100	20	10	32	70	5,5	53	7	
	8 125 340/7 DR	125	20	10	40	90	5,5	53	8	
	10 160 340/7 DR	160	20	10	40	120	5,5	53	10	
	12 200 340/7 DR	200	20	10	60	160	7	58	12	

Zubehör

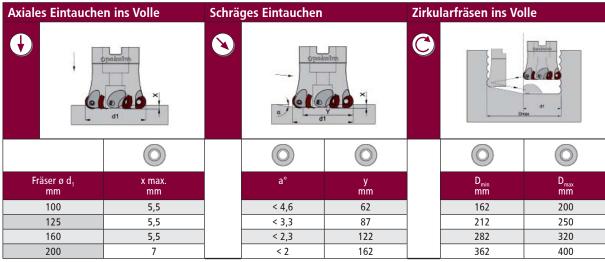
Zubehör	Restellin.	Bazistirhung	lh ₂	se Preisintill
	TV 1-5	Torque Vario - S Drehmoment- schraubendreher	von 1,0 bis 5,0 Nm Nm	mit Skala
-	T20 500	Torx-Wechselklinge für Torque Vario	T 20 L 175	max. 8,0 Nm
	T20 502	Torx-MagicSpring Wechselklinge für Torque Vario	T 20 L 175	max. 8,0 Nm

Anzugsmoment Torxgröße T20 M_d: 2,5 Nm

Spinworx®-Platten

 $Wendeschneidplatten \ mit\ dazugeh\"{o}rigen\ Stiften\ sind\ nur\ im\ Set\ erh\"{a}ltlich.$

Schnittgeschwindigkeit V_c in m/min


WERKSTOFF		/ 8		Real	#9REDR
Stahl		20	10	Grob Fein	100 – 300 150 – 350
Eisenguss	***	20	10	Grob Fein	120 – 220 160 – 250

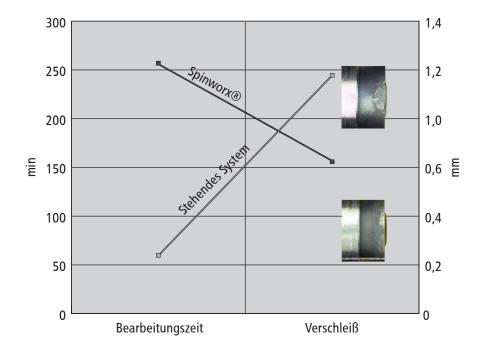
Anwendungsdaten (fz/ap)

WERKSTOFF	\ \ \ \		'/'s.	*8kg DR
Stahl	20	10	f _z (mm) a _p (mm)	0,25 - 0,6 0,2 - 4,0
Eisenguss	20	10	f _z (mm) a _p (mm)	0,25 - 0,6 0,2 - 4,0

Diese Angaben sind Richtwerte.

Erweiterte Einsatzdaten

x maximal zulässige Eintauchtiefe


f, entsprechend Einsatztabelle auf 30% reduzieren

y Mindestverfahrweg a_p/f_z entsprechend Einsatztabelle D_{min} kleinster Bohrungsdurchmesser in Abhängigkeit vom Werkzeugdurchmesser

D_{max} größter Bohrungsdurchmesser in Abhängigkeit vom Werkzeugdurchmesser

VERGLEICH

Beim **Spinworx**® haben wir nach einer Bearbeitungszeit von 265 Minuten einen Verschleiß von 0,632 mm und haben damit noch lange kein Standzeitende erreicht.

Das stehende System hatte nach 60 Minuten (eine WSP-Seite) einen Verschleiß von 1,17 mm und damit sein Standzeitende für diese Seite erreicht.

AUS DER PRAXIS FÜR DIE PRAXIS

Hermesmeyer & Greweling, Marienfeld:

Bei Hermesmeyer & Greweling im westfälischen Marienfeld nahe Gütersloh kennt man sich aus mit dem Fräsen. 1982 gegründet von Hubert Hermesmeyer und Hermann Greweling steht das Unternehmen seither für Kompetenz in der Fräsbearbeitung für den Anlagen-, Formen-, Maschinen- und Werkzeugbau. Leistungsstarke Software und ein durchgängig vernetzter Maschinenpark aus NC- und HSC-Maschinen namhafter Hersteller gewährleisten Flexibilität und kompromisslose Qualität in der Fertigung.

Ebenfalls keine Kompromisse machen die heutigen Juniorchefs Klaus Hermesmeyer und Klaus Greweling bei der Wahl der Schneidwerkzeuge. Als einer der ersten Betriebe setzte Hermesmeyer & Greweling das neue Werkzeugsystem Spinworx® ein. In intensiven Testreihen musste die Pokolm-Innovation, bei der sich die Schneidplatten während des Fräsprozesses selbsttätig mitdrehen, ihre Vorteile unter Beweis stellen. Klaus Greweling: "Zuerst ließ der Gedanke, dass sich die Schneidplatte um einen eingedrehten Stehbolzen mitdreht, Skepsis aufkommen. Die Versuche erbrachten aber den Beweis, dass diese Technologie einwandfrei funktioniert und bei bestimmten Werkstoffen sogar deutliche Vorteile bringt."

AUS DER PRAXIS FÜR DIE PRAXIS

AUFGABE:

In diesem Versuch ging es um einen Auftrag für die Automobilindustrie, wo Präzision und der Faktor Zeit die entscheidenden Rollen spielen.

Das Ausgangsmaterial war ein 1.7131-Stahl-Rohling, aus dem ein Beschneidewerkzeug für ein Tankdeckeleinsatz einer Seitenwand zu fräsen war. Die abschließende Schlichtbearbeitung sollte nach dem Einbau in das Verformungswerkzeug erfolgen. Zielvorgabe war, mit möglichst wenig Maschinenstunden und bei nahezu mannlosem Betrieb das Rohteil bis zum Schlichtprozess zu bearbeiten. Für den Testlauf hatte Pokolm-Seniorchef Franz-Josef Pokolm ein Spinworx® 6 52 310/7DR Ø 52 r6 mitgebracht. Für das Fräsen stand eine DMU 200 P mit einer Spindelleistung von 42 kW und der Werkzeugaufnahme SK50 zur Verfügung. Die geforderte zweiseitige Bearbeitung machte eine Umrüstung nötig. Das Rohteil wurde jeweils von oben nach unten und von außen nach innen abgetragen.

MASCHINE	MATERIAL
Deckel Maho	1.7131
DMU 200 P	

Die Hauptlast lag auf der Zerspanung der oberen Roh-teilgeometrie. Dieser Prozess dauerte 114 min bei einem Gesamtvorschub von 4.500 mm/min und einer Frästiefe von 1,25 mm. Für die untere Seite benötigte die DMU 200 P weitere 58 min. Zerspanungsmechaniker Karl-Wilhelm Dangberg zeigte sich sehr zufrieden mit dem

Ergebnis: "Das fertige Teil konnte nach der Bearbeitung sofort in das Beschneidewerkzeug integriert werden. Natürlich ist die Zeitersparnis durch den Wegfall des Weiterdrehens der Schneidplatten ein starkes Argument für Spinworx®. Noch wesentlicher für mich als Maschinenführer ist aber die unglaublich hohe Prozesssicherheit."

PRAXISBEISPIEL: **Bauteil:** Tankdeckeleinsatz

Material: 1.7131

Aufnahme: 100 22 710 (Ø 22, SK 50)

(DIN 69 871 A)

2. Seite 58 min

6 52 310/7 DR (Ø 52, r6) Werkzeug:

WSP: 03 12 8A0 DR, Ø12

Auskraglänge: 155 mm

Kühlung Luft durch die Spindel

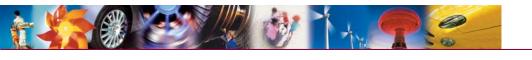
v_c (Schnittgeschw.): 250 m/min v_f (Gesamtvorschub): 4.500 mm/min S (Drehzahl): 1.530 1/min **f**_z (Vorschub pro Zahn): 0.49 mm **a**_p (Schnitttiefe): 1,25 mm a_e (Schnittbreite): 38 mm Bearbeitungszeit: 1. Seite 114 min

ERGEBNIS:

Franz-Josef Pokolm nahm anschließend die Spinworx®-Schneidplatten unter die Lupe. Das Resultat: "Die 30-fache Vergrö-Berung zeigte selbst nach der Gesamtbearbeitungszeit von 172 min so gut wie keinen Verschleiß. Die Schneidplatten hätten problemlos noch für das Fräsen weiterer Teile genutzt werden können."

Fazit: Mit dem Werkzeug Spinworx® von Pokolm lassen sich außerordentliche kurze Bearbeitungszeiten bei gleichzeitig minimalen Werkzeugkosten verwirklichen. Weitere Pluspunkte sind die optimale Prozesssicherheit, der mannarme Betrieb und – abgesehen von der Umrüstung des Werkstücks für die Oben- und Untenbearbeitung – kein Maschinenstillstand. Im Ergebnis ergeben sich erheblich geringere Bauteilkosten und ein deutlicher Zeitgewinn.

SPINWORX®


→ KONTAKT

Pokolm

Frästechnik GmbH & Co. KG

Adam-Opel-Straße 5 33428 Harsewinkel

Telefon: +49 5247 9361-0 Telefax: +49 5247 9361-99 E-Mail: info@pokolm.de Internet: www.pokolm.de

